Раздел 16 Формирование поясняющей информации

Физика
Лабораторные работы
Курс электрических цепей
Полупроводниковая электроника
Курс лекций и задач
Потенциал электpостатического поля
Пpимеpы использования теоpемы Гаусса
Закон Ома
Закон Ампеpа
Феppомагнетизм
Электротехника и электроника
Резонанс напряжений
Методы расчета сложных цепей
Трехфазные цепи
Цепи со взаимной индуктивностью
Несинусоидальные токи
Математика
Вычислительная математика
Векторная алгебра
Графика
Начертательная геометрия
Сборочные чертежи
Инженерная графика
Построение лекальных кривых
Геометрические построения
Позиционные задачи
Информатика
Электронная коммутация
Модернизация компьютера
Архитектура компьютера
Маршрутизация
Экспертные системы
Компьютерная безопасность
Требования к защите компьютерной информации
Проектирование системы защиты
Авторизация
Категорирование прав доступа
Диспетчер доступа
Антивирусная защита
Атомная энергетика
Атомные батареи
Физика атомного реактора
Атомные электростанции
Испытания атомного оружия
Воспоминания участников
атомного проекта

Существуют две причины, которые побуждают разработчиков экспертных систем делать их по возможности "прозрачными" для пользователя. Под прозрачностью при этом понимается способность системы объяснить пользователю, почему принято именно такое решение, вследствие каких рассуждений система пришла к тому или иному выводу.

  • Клиент, который обращается к экспертной системе за советом, должен знать, на основе каких логических доводов этот совет был сформирован. Только получив исчерпывающую информацию о ходе рассуждений, клиент может с доверием отнестись к полученному совету, поскольку за последствия неверно принятого решения расплачиваться придется не столько "советчику", сколько чересчур доверчивому клиенту.
  • Инженер, обслуживающий экспертную систему, должен быть уверен в правильности работы всех подсистем, а проверить это он может, только получив от экспертной системы всю возможную информацию о ходе рассуждений в процессе решения задач.
  • Исследователи пришли к заключению, что автоматическое формирование пояснений требует доступа к модели предметной области точно так же, как и извлечение знаний
  • Процесс выполнения консультаций в экспертной системе, использующей обратную цепочку логического вывода, включает поиск в дереве целей
  • Система EMYCIN (Empty MYCIN — пустая MYCIN) представляет собой оболочку, созданную на базе системы MYCIN [van Melle, 1981]. Идея состояла в том, чтобы удалить из системы MYCIN базу знаний и создать таким образом систему, сохраняющую все функциональные возможности MYCIN, которую в дальнейшем можно наполнять знаниями из той или иной предметной области
  • В результате исследователи и разработчики экспертных систем в 1980-х годах задумались над тем, как объединить порождающие правила с фреймами, которые могли бы предоставить необходимую информацию о контексте. Во фреймах могут быть представлены важные отношения между данными и гипотезами, которые не нашли отражения в порождающих правилах.
  • Эйкинс (Aikins) также обратила внимание на то, что отчетливо выраженная модульность и единообразие порождающих правил имеет и обратную сторону. Большинство наборов правил обладает неявно выраженной группировкой, которая существует либо в виде определенного порядка индексации, скрытой в интерпретаторе
  • Генерирование колебаний в электрических цепях Автоколебательная система - устройство с ОС. В цепях, содержащих обратные связи, могут возникнуть изменяющиеся во времени электрические токи без воздействия на эти цепи внешних управляющих сигналов. Такие цепи называют автоколебательными системами, а колебания - автоколебаниями.

  • Один из способов дополнить и расширить возможности формирования пояснений в системах, базирующихся на представлении знаний в виде фреймов, — добавить в них возможность формирования изображений. В системе JETA [Abu-Hakima et al., 1993] привычный текстовый интерфейс, подобный тому, который использовался при формировании пояснений в системе CENTAUR, был дополнен изображениями диаграмм в виде схем и графов.
  • В этом разделе будет рассмотрен достаточно радикальный подход к формированию пояснений в экспертных системах, который предполагает представление соответствующих знаний в явной форме и хранение их отдельно от знаний, необходимых для решения проблем в предметной области.
  • Модель предметной области содержит сведения, касающиеся специфики области приложения экспертной системы, в частности сведения о причинно-следственных связях и систематике объектов в этой области. Эта концепция достаточно близка тому, что Кленси (Clancy) назвал "структурным знанием" Основные задачи на прямую и плоскость Векторная алгебра
  • Система XPLAN создавалась в рамках проекта Explainable Expert Systems (EES) [Heches et al, 1985], [Moore, 1995]. Идея этого проекта вполне созвучна существующей в настоящее время тенденции группировать и представлять в явном виде знания различного вида.
  • Сценарии могут помочь в представлении шаблонов сообщений, но не учитывают возможности представления более субъективных вещей вроде информации о тех соображениях, которые побудили систему выполнить определенную манипуляцию с переменными или задать вопрос пользователю.
  • Указанные возможности продемонстрированы в этой главе на примере программы CENTAUR, в которой используются иерархия фреймов для отслеживания контекста применения порождающих правил и список актуальных задач для управления порядком анализа гипотез.
  • Почему формирование пояснений в системах, основанных на порождающих правилах, упрощается, если разделить используемые правила на группы по назначению?

    2. Почему формирование пояснений в системах, основанных на порождающих правилах, упрощается, если разделить используемые правила на группы по назначению?

    3. Какую помощь в формировании пояснений может оказать использование фреймов? С какой целью фреймы комбинируются с порождающими правилами?

    4. Ниже представлена новая версия программы Assault-weapon (оружие нападения), которая была рассмотрена в главе 11. В этой версии программа задает пользователю вопросы об определенном виде оружия, а затем формирует пояснение, почему данный тип оружия относится (или не относится) к классу "оружие нападения" в соответствии с имеющимися в программе правилами. Программа состоит из двух частей: в первой уточняются характеристики модели оружия, а во второй формируется пояснение.

    I) Разработайте правила, которые не представлены в приведенном ниже тексте программы. Указания, какие именно правила требуется разработать, выделены в комментариях в тексте программы.

    ;; Объявления (deftemplate gun

    (field name (type SYMBOL))

    (field model (type SYMBOL))

    (field class (type SYMBOL) (default NIL))

    (field action (type SYMBOL) (default NIL))

    (field caliber (type FLOAT) (default 0.0))

    (field capacity (type INTEGER) (default 0))

    (field features (type SYMBOL) (default NIL))

    )

    (deftemplate assault-weapon

    (field make (type SYMBOL))

    (field model (type SYMBOL))

    )

    ;; ПРАВИЛА

    ;; Общий случай

    ;; Любая полуавтоматическая

    ;; винтовка (semi-automatic rifle)

    ;; или охотничье ружье (shotgun) с емкостью

    ;; магазина более 5 патронов.

    (defrule Parti

    (gun (make ?M) (model ?N)

    (class ?CSrifle|shotgun) (action semi) (capacity ?X&:(> ?X 5))) =>

    (assert (assault-weapon (make ?M) (model ?N)))

    )

    Разработайте правило make-and-model, которое будет запрашивать у пользователя необходимую информацию о модели оружия и формировать вектор gun в рабочей памяти. Используйте в качестве модели следующие правила, (defrule class-and-action

    ?G <- (gun (action NIL)) =>

    (printout t crlf

    "Please enter the class of gun" t crlf "

    for example shotgun, rifle, pistol " t crlf "CLASS:" t crlf

    ;; "Введите класс оружия, "

    ;; "например, охотничье ружье, карабин,

    ;; "пистолет и т.д. "

    ;; "КЛАСС:"

    (bind ?class (read)) (printout t crlf

    "Please enter the action type of the gun" t crlf

    "for example bolt, slide, lever, semi,

    revolver ... " t crlf "ACTION:" t crlf

    ;; "Введите тип оружия, "

    ;; "например, с цилиндрическим затвором, со

    ;; скользящим затвором, с рычажным затвором,

    ;; полуавтоматический, револьвер ...

    ;; "ТИП:"

  • Примеры решения типовых задач математика, физика, электротехника