Раздел 9 Экспертный анализ

Физика
Лабораторные работы
Курс электрических цепей
Полупроводниковая электроника
Курс лекций и задач
Потенциал электpостатического поля
Пpимеpы использования теоpемы Гаусса
Закон Ома
Закон Ампеpа
Феppомагнетизм
Электротехника и электроника
Резонанс напряжений
Методы расчета сложных цепей
Трехфазные цепи
Цепи со взаимной индуктивностью
Несинусоидальные токи
Математика
Вычислительная математика
Векторная алгебра
Графика
Начертательная геометрия
Сборочные чертежи
Инженерная графика
Построение лекальных кривых
Геометрические построения
Позиционные задачи
Информатика
Электронная коммутация
Модернизация компьютера
Архитектура компьютера
Маршрутизация
Экспертные системы
Компьютерная безопасность
Требования к защите компьютерной информации
Проектирование системы защиты
Авторизация
Категорирование прав доступа
Диспетчер доступа
Антивирусная защита
Атомная энергетика
Атомные батареи
Физика атомного реактора
Атомные электростанции
Испытания атомного оружия
Воспоминания участников
атомного проекта

Во многих реальных приложениях приходится сталкиваться с ситуацией, когда автоматический решатель задач имеет дело с неточной информацией. В этой главе мы рассмотрим основные идеи, касающиеся количественной оценки неопределенности и методов формирования нечетких суждений.

  • Теория предметной области (т.е. наши знания об этой области) может быть неясной или неполной: в ней могут использоваться недостаточно четко сформулированные концепции или недостаточно изученные явления. Например, в диагностике психических заболеваний существует несколько отличающихся теорий о происхождении и симптоматике шизофрении.
  • Мы начнем с понятия условной вероятности и остановимся на тех причинах, по которым вероятностный подход критикуется большинством исследователей, занимающихся экспертными системами.
  • Это правило, которое иногда называют инверсной формулой для условной вероятности, позволяет определить вероятность P(d | s) появления события d при условии, что произошло событие s через известную условную вероятность P(s | d).
  • В идеальном мире можно вычислить вероятность P(di| E), где di — i-я диагностическая категория, а £ представляет все необходимые дополнительные свидетельства или фундаментальные знания, используя только вероятности P(di | Sj), где Sj является j-м клиническим наблюдением (симптомом).
  • На первый взгляд, если коэффициенты уверенности используются только для упорядочения альтернативных гипотез, это не очень страшно. Но Адаме также показал, что возможна ситуация, когда при использовании коэффициентов уверенности две гипотезы будут ранжированы в обратном порядке по отношению к соответствующим вероятностям.
  • Помимо использования коэффициентов уверенности, в литературе описаны и иные подходы, альтернативные вероятностному.
  • Редко когда эти более общие категории могут быть четко очерчены. Конкретный объект может обладать частью характерных признаков определенной категории, а частью не обладать, принадлежность конкретного объекта к определенному классу может быть размыта.
  • Ту роль, которую в классической теории множеств играет двузначная булева логика, в теории нечетких множеств играет многозначная нечеткая логика, в которой предположения о принадлежности объекта множеству
  • Теория возможности является одним из направлений в нечеткой логике, в котором рассматриваются точно сформулированные вопросы, базирующиеся на неточных знаниях.
  • Одно из главных достоинств формализма нечеткой логики в применении к экспертным системам состоит в возможности комбинирования его логических операторов
  • Какова вероятность того, что в каждом из двух последовательных бросаний игральной кости выпадет число больше трех? Собор Василия Блаженного Древнеруское искусство 

    3. Предположим, что вероятность отказа одного из двигателей трехмоторного самолета равна 0.01. Какова вероятность того, что откажут все три двигателя, если считать, что работоспособность одного двигателя не зависит от состояния двух других?

    4. Какова вероятность того, что в примере упр. 3 откажут все три двигателя, если отказаться от предположения о независимости состояния двигателей, а использовать приведенные ниже значения условных вероятностей?

    Р(отказ_двиг_1 | отказ_двиг_2 v отказ _двиг_3) =0.4

    Р(отказ_двиг_2 | отказ_двиг_1 v отказ_двиг_3) = 0.3

    Р(отказ_двиг_3 | отказ_двиг_1 v отказ_двиг_2) = 0.2

    Р(отказ_двиг_1 отказ_двиг_2 v отказ_двиг_3) = 0.9

    Р(отказ_двиг_2 | отказ_двиг_1 v отказ_двиг_3) = 0.8

    Р(отказ_двиг_3 | отказ_двиг_1 v отказ_двиг_2) = 0.7

    5. Положим, что Р(ртказ_трех_двиг | диверсия) = 0.9, а вероятность отказа любого отдельного двигателя, как и ранее, равна 0.01. Используя условные вероятности, представленные в упр. 4, определите, какова вероятность того, что была совершена диверсия, если известно, что отказали все три двигателя.

  • Примеры решения типовых задач математика, физика, электротехника