Векторная алгебра и аналитическая геометрия Вычислить пределы Дифференциальные уравнения Кривые второго порядка Решение типового варианта контрольной работы Линейная алгебра Решение систем линейных уравнений Аналитическая геометрия

Математика Контрольная работа

Задача 6. Вычислить .

Решение. Это интеграл вида .

Одно из чисел m и n нечетное (в данном случае ), поэтому интеграл можно вычислить следующим образом. Преобразуем подынтегральное выражение

, следовательно, можно выполнить замену: .

В результате получим

Задача 7. Вычислить .

Решение. Это интеграл вида  с чётными m и n (в данном случае ). Воспользуемся формулой (19) понижения степени

,

получим

Задача 8. Вычислить .

Решение. Применяя тригонометрическую формулу (23)

,

получим

Задача 9. Вычислить .

Решение. Выделим в числителе производную от знаменателя:

Первый интеграл вычисляем, сделав замену , тогда . Имеем

Второй интеграл преобразуем, выделив в знаменателе полный квадрат: . Тогда с учетом формулы (14) получим

Итак, исходный интеграл равен

Задача 10. Вычислить .

Решение. Выделим в числителе производную подкоренного выражения

Первый интеграл вычисляется путем замены , тогда  Имеем

Второй интеграл преобразуем путем выделения полного квадрата в подкоренном выражении:

 

Тогда с учетом формулы (16) получим

Следовательно, исходный интеграл равен

Пример 1.8. Вычислить координаты вектора , если известны декартовы координаты:  и .

Решение: По формуле, выражающей векторное произведение через декартовы координаты имеем:  

.

Ответ: координаты вектора .

Пример 1.9. Вычислить , если , .

Решение: Так как у векторов  и  третья координата не задана, то можно выразить векторное произведение через определитель 3-го рода, подставив вместо нее нули: .

Ответ: .


Алгебра и аналитическая геометрия Примеры решения типовых задач