Векторная алгебра и аналитическая геометрия Вычислить пределы Дифференциальные уравнения Кривые второго порядка Решение типового варианта контрольной работы Линейная алгебра Решение систем линейных уравнений Аналитическая геометрия

Математика Контрольная работа

Задача 15. Вычислить

Решение. Разложим подынтегральную функцию в сумму простейших дробей. Множителю  будет соответствовать сумма  множителю   - дробь . Тогда получим разложение

Приведем правую часть равенства к общему знаменателю  и приравняем числители получившихся дробей:

Найдем А, В, С, D. Согласно методу частных значений

(см. задачу 14) полагаем , тогда равенство примет вид  откуда . Далее применяем метод неопределенных коэффициентов, приравнивая коэффициенты при одинаковых степенях слева и справа.

Так, для х получим равенство  откуда ; для  имеем , откуда ; для  получим , откуда

Итак,

Вычисляем интеграл

Задача 16. Вычислить , если l задана уравнением

Решение. Воспользуемся формулой (27) вычисления криволинейного интеграла I рода для кривой, заданной в полярных координатах:

Получим

Согласно формуле (20)

Тогда

Задача 17. Найти массу дуги кривой , если плотность кривой 

Решение. Применяем формулу (28) вычисления массы дуги с помощью криволинейного интеграла I рода:

Формула (25) позволяет преобразовать криволинейный интеграл в определенный:

Так как , получаем

Задача 1.4

Задан вектор  и известно, что точка  имеет координаты . Найти координаты точки  – начала вектора.

Решение: Введем обозначения:  – координаты вектора ,  – координаты точки ,  – координаты точки .

Из свойства 2 следует, что для решения необходимо решить два уравнения: ; .

Подставим известные величины: ; ; откуда искомые координаты: ; . Ответ: точка  имеет координаты .

Задача 1.5

Найти , если  и , где , , угол .

Решение: Для решения необходимо знать длину векторов, что нам неизвестно, но даны данные по базису, поэтому перейдем от исходных векторов к базисным, подставим в формулу  выражения разложения векторов по базису:

   

Преобразуем скалярное произведение согласно 2 и 6 свойству:

Приведем подобные члены в полученном выражении и применим 3-е свойство скалярного произведения:

Вставим исходные данные и распишем формулу скалярного произведения базисных векторов:

. Ответ: 99.


Алгебра и аналитическая геометрия Примеры решения типовых задач