Векторная алгебра и аналитическая геометрия Вычислить пределы Дифференциальные уравнения Кривые второго порядка Решение типового варианта контрольной работы Линейная алгебра Решение систем линейных уравнений Аналитическая геометрия

Математика Контрольная работа

Задача 2. Составить уравнение линии, для каждой точки которой отношение расстояний до точки А (3; 0) и до прямой х=12 равно числу =0,5. Полученное уравнение привести к простейшему виду и построить кривую.

Решение. Пусть М (х; у) – текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр МВ на прямую х=12 (рис. 2). Тогда В (12; у). По условию задачи

МА= МВ=

Тогда

= =

4х2 – 24х + 36 + 4у2 =х2 – 24х +144, 3х2 + 4у2=108,

Полученное уравнение представляет собой эллипс вида  где а=6, b=3.

Определим фокусы эллипса F1 (−с; 0) и F2(с; 0). Для эллипса справедливо равенство b2=a2 – b2 =9 и с=3.

То есть, F1 ( −3; 0) и F2 (3; 0) – фокусы эллипса (точки F2 и А совпадают).

Эксцентриситет эллипса =

Рис. 1

Задача 3. Составить уравнения линии, для каждой точки которой ее расстояние до точки А (3; −4) равно расстоянию до прямой у=2. Полученное уравнение привести к простейшему виду и построить кривую.

Рис. 2

Решение. М (х; у) – текущая точка искомой кривой. Опустим из точки М перпендикуляр МВ на прямую у=2 (рис. 3). Тогда В (х; 2). Так как МА =МВ,

то =  или

(х – 3)2 +у2+8у+16 =у2 – 4у +4,

−12у – 12 =(х – 3)2,

у +1= −

Рис. 3


Полученное уравнение определяет параболу с вершиной в точке О' (3; −1). Для приведения уравнения параболы к простейшему (каноническому) виду положим х – 3=Х', у +1=У'. Тогда в системе координат Х'О'У' уравнение параболы принимает следующий вид: У'=−Х')2. в системе координат Х'О'У' строим параболу.

Вопросы для самопроверки

Дайте определение прямоугольной декартовой системы координат.

Напишите формулу для нахождения расстояния между двумя точками.

Напишите формулы для определения координат точки, делящей данный отрезок в данном отношении.

Напишите формулы преобразования координат: а) при параллельном переносе системы координат; б) при повороте системы координат.

Напишите уравнения прямой: а) с угловым коэффициентом; б) проходящей через данную точку в данном направлении; в) проходящей через две данные точки; г) в «отрезках».

Как найти координаты точки пересечения двух прямых?

Напишите формулу для определения угла между двумя прямыми.

Каковы условия параллельности и перпендикулярности двух прямых?

Сформулируйте определение окружности.

Напишите уравнение окружности с центром в любой точке плоскости хОу; с центром в начале координат.

Дайте определение эллипса. Напишите каноническое уравнение эллипса.

Что называется эксцентриситетом эллипса? Как изменяется форма эллипса с изменением эксцентриситета гиперболы.

Дайте определение гиперболы. Напишите каноническое уравнение гиперболы.

Напишите формулу для определения эксцентриситета гиперболы. Напишите уравнения для нахождения асимптот гиперболы.

Сформулируйте определение параболы. Напишите каноническое уравнение параболы, симметричной относительно оси Оу.

Операции над векторами

Над векторами возможны следующие операции: сложения, вычитания, умножение вектора на число.

Определение 1.7.  Операции сложения, вычитания векторов и операция умножения вектора на скаляр называются линейными операциями.

Сложение векторов. Сумма двух векторов  строится как вектор, идущий от начала вектора  к концу вектора , если вектор  приложен к вектору  (Рис. 1.3).

 

Рис. 1.3. Сумма двух векторов

 

Для построения сумму двух векторов нужно («правило параллелограмма»): приложить два вектора к одной точке и достроить до параллелограмма. Диагональ параллелограмма, идущая из точки приложения векторов и есть их сумма.

Для построения суммы произвольного числа векторов нужно приложить второй вектор к концу первого, третий к концу второго и т.д., сумма находится как вектор, идущий из начала первого к концу последнего.

Свойства операции сложения векторов:

1) коммутативность

2) ассоциативность:

3) для любого вектора : .

4) для любого вектора  справедливо:

.                       

Вектор  называют противоположным вектору  и обозначают как .

Вычитание векторов. Вектор, являющийся результатом вычитания двух векторов строится также, по правилу параллелограмма, но является второй диагональю в нем (Рис.1.4):

Рис. 1.4. Вычитание векторов по правилу параллелограмма


Алгебра и аналитическая геометрия Примеры решения типовых задач