Векторная алгебра и аналитическая геометрия Вычислить пределы Дифференциальные уравнения Кривые второго порядка Решение типового варианта контрольной работы Линейная алгебра Решение систем линейных уравнений Аналитическая геометрия

Математика Контрольная работа

Упражнение  3. Исследовать функцию методами дифференциального исчисления и начертить график.

Исследование функции и построение графика рекомендуется проводить по следующей схеме:

1)    найти область определения функции D(y);

2)    найти точки экстремума функции и определить интервалы ее монотонности;

3)    найти точки перегиба графика функции и определить интервалы выпуклости и вогнутости графика функции;

4)    найти асимптоты графика функции;

5)     построить график, используя результаты предыдущих исследований;

6)    дополнительно найти наибольшее и наименьшее значения на отрезке .

Решение:

Дана функция:

1)    Областью определения данной функции являются все действительные значения аргумента х, то есть D(y): , а это значит, что функция непрерывна на всей числовой прямой и график ее не имеет вертикальных асимптот.

2)    Исследуем функцию на экстремум и интервалы монотонности. С этой целью найдем ее производную и приравняем к нулю:

Решая полученное квадратное уравнение, делаем вывод о том, что функция имеет две критические точки I рода х1 = -5, х2 = -1. Разбиваем область определения этими точками на части и по изменению знака производной в них выявляем промежутки монотонности и наличие экстремума:

x

-5

-1

+

0

-

0

+

&

max

(

min

&

3)    Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем II производную заданной функции и приравняем ее к нулю:

, т.е.

Итак, функция имеет одну критическую точку 2 рода . Разобьем область определения полученной точкой на части, в каждой из которой установим знак II производной:

x

-3

-

0

+

т.п.

Значение  является абсциссой точки перегиба графика функции, а ордината этой точки

4)    Выясним наличие у графика заданной функции наклонных асимптот. Для определения параметров уравнения асимптоты  воспользуемся формулами: .

Имеем .

Таким образом, у графика заданной функции наклонных асимптот нет.

5)    Для построения графика в выбранной системе координат изобразим точки максимума А1(-5; 4), минимума А2(-1; -4), перегиба А3 (-3; 0) и точку пересечения графика с осью Оу А4 (0; ). С учетом результатов предыдущих исследований построим кривую.

6)    Найдем наибольшее и наименьшее значения заданной функции на отрезке  . Для этого посчитаем значения функции на концах этого отрезка, в критических точках I рода, попавших на отрезок, и сравним результаты:

 .

Очевидно, что .

 

Упражнение 4. Задан закон s(t) изменения пути движения материальной точки; нужно найти значения скорости и ускорения этой точки в момент времени t0.

 

Решение:

Пусть .

Известно, что значения скорости и ускорения материальной точки в некоторый момент времени являются соответственно значениями в этот момент I и II производных функции, задающей закон изменения пути движения точки.

У нас

(ед. ск.)

(ед. уск.)


Алгебра и аналитическая геометрия Примеры решения типовых задач