Физика атомного реактора Сопротивление материалов Математика решение задач Информатика Атомная энергетика безопасность Электротехника и электроника Ручные вычисления по методу Гаусса

Вычислительная математика

Поясним происхождение формул в методах Рунге-Кутта. Для получения закона вычисления значения Y(x) в каждой следующей точке поступают приблизительно так: выписывают разложение неизвестной функции в ряд Тейлора в точке Xi, как мы проделывали это выше, затем берут несколько первых членов этого разложения, и преобразуют полученную формулу Тейлора. После подставления Xi вместо переменной X и получают окончательное правило перехода к следующей точке.

Легко убедиться, что при выписывании разложения в ряд Тейлора только до линейного члена и подстановки значения X мы получим формулу метода Эйлера, т.е. и он является частным случаем общих методов Рунге-Кутта.

Пример 4.3. Применим формулы разобранных методов для нахождения значения функции Y(x) в точке 1, если эта функция удовлетворяет уравнению y'=y с начальным условием y(0)=1.

При решении методом Эйлера (n=2) имеем:

Y1=Y0+hf(X0,Y0)=1+0.5f(0,1)=1.5, Y(b)=Y2=Y1+hf(X1,Y1)=1.5+0.5f(0.5,1.5)=2.25.

При решении методом Рунге-Кутта 2-го порядка (n=1) имеем:

Z0=Y0+h/2*f(X0,Y0)=1+0.5f(0,1)=1.5, Y(b)=Y1=Y0+hf(X0+h/2,Z0)=1+f(0.5,1.5)=2.5.

При решении методом Рунге-Кутта 4-го порядка (n=1) имеем:

k1=h*f(X0,Y0)= 1*f(0,1)= 1

k2=h*f(X0+h/2,Y0+k1/2)= 1*f(0.5,1.5)= 1.5

k3=h*f(X0+h/2,Y0+k2/2)=1*f(0.5,1.75)=1.75

k4=h*f(X0+h,Y0+k3)= 1*f(1,2.75)=2.75

Y(b)=Y1=Y0+1/6*(k1+2k2+2k3+k4)=1+1/6*(1+3+3.5+2.75)=65/24

Упражнение 4.7. Найти точный ответ и сравнить погрешности, полученные при решении тремя различными методами.

Контрольные вопросы.

1. Какие типы приближенных методов решения обыкновенных дифференциальных уравнений Вы знаете? Назовите по одному примеру каждого типа.

2. В чем суть метода Пикара? Объясните происхождение рекуррентной формулы метода.

3. В чем суть метода разложения функции Y(x) в ряд?

4. В чем суть метода Эйлера? Поясните графически.

5. Какова общая схема численных методов решения дифференциальных уравнений первого порядка?

6. Каков порядок точности при решении дифференциальных уравнений методами Эйлера, Рунге-Кутта второго и четвертого порядков?

7. Каким образом на практике следят за точностью при решении дифференциальных уравнений методами Рунге-Кутта второго и четвертого порядков? Обоснуйте этот способ.

Непосредственной проверкой убеждаемся, что условие (4.4.10) будет выполнено, если матричную поправку  взять в виде одноранговой nхn-матрицы

.

Таким образом, приходим к так называемой формуле пересчета С. Бройдена (1965 г.)

  (4.4.11)

которая позволяет простыми вычислениями перейти от старой матрицы  к новой  такой, чтобы выполнялось соотношение секущих (4.4.4а) в новой точке и при этом изменения в аффинной модели (4.4.7) были минимальны

Совокупность формул (4.4.6), (4.4.11) вместе с обозначениями (4.4.5) называют методом секущих Бройдена или просто методом Бройдена решения систем нелинейных числовых уравнений.

Хотя в методах секущих обычным является задание двух начальных векторов ( и ), для метода Бройдена характерно другое начало итерационного процесса. Здесь нужно задать один начальный вектор   , начальную матрицу  и далее в цикле по k = 0,1,2,... последовательно выполнять следующие операции:

решить линейную систему

 (4.4.12)

относительно вектора :

найти векторы  и :

; (4.4.13)

сделать проверку на останов (например, с помощью проверки на малость величин   и/или  и если нужная точность не достигнута, вычислить новую матрицу  по формуле пересчета (см. (4.4.11))

  (4.4.14)

В качестве матрицы , требуемой равенством (4.4.12) для запуска итерационного процесса Бройдена, чаще всего берут матрицу Якоби  или какую-нибудь ее аппроксимацию. При этом получаемые далее пересчетом (4.4.14) матрицы , ,... не всегда можно считать близкими к соответствующим матрицам Якоби , ,... (что может иногда сыграть полезную роль при вырождении матриц ). Но, в то же время, показывается, что при определенных требованиях к матрицам Якоби  матрицы  обладают «свойством ограниченного ухудшения», означающим, что если и происходит увеличение  с увеличением номера итерации k, то достаточно медленно. С помощью этого свойства доказываются утверждения о линейной сходимости () к х*

при достаточной близости  к х* и  к  а в тех предположениях, при которых можно доказать квадратичную сходимость метода Ньютона (3.1.2), — о сверхлинейной сходимости последовательности приближений по методу Бройдена.

Методы решения обыкновенных дифференциальных уравнений Постановка задачи. Классификация методов решения ОДУ. Одношаговые методы решения обыкновенных дифференциальных уравнений (ОДУ). Определение дифференциального уравнения 1-го порядка. Задача Коши. Аналитические методы решения. Графические методы. Одношаговые и многошаговые методы. Метод Пикара. Метод Эйлера. Геометрический смысл использования метода Эйлера. Метод Рунге-Кутта, его геометрический смысл.
Элементы математической статистики