печи Harvia
Физика атомного реактора Сопротивление материалов Математика решение задач Информатика Атомная энергетика безопасность Электротехника и электроника Ручные вычисления по методу Гаусса

Вычислительная математика

Постановка задачи

Дана таблица зависимости функции Y от аргумента X:

Х

Х1

Х2

………

Хn

У

У1

У2

………

Уn

Надо среди функций одного из указанных ниже видов определить такую (найти значения соответствующих параметров), что сумма квадратов разностей значений этой функции в узлах и величин Yi минимальна.

Обычно ограничиваются функциями одного из следующих видов:

Y=ax+b

Y=ax2+bx+c (реже полином более высокой степени)

Y=axn

Y=a ex

Y=1/(ax+b)

Y=a ln(x)+b

Y=a/x+b

Y=x/(ax+b)

Нахождение наилучшей линейной приближающей функции.

Разберем подробно решение задачи, когда решение ищется в виде линейной функции (вид1). Цель - определить коэффициенты a и b таким образом, чтобы величина

приняла наименьшее значение.

Функция F(a,b) представляет из себя многочлен второй степени относительно величин a и b с неотрицательными значениями, поэтому решение всегда существует. Более того, оно единственно, если узлов больше одного и все они разные.

Задача 5.1. Почему это действительно так? Какую поверхность задает F(a,b)?

Известно, что для поиска экстремумов гладких функций нескольких переменных нужно находить критические точки, т.е. те точки, в которых все частные производные функции равны нулю. В нашем случае необходимо решить следующую систему:

Это система двух линейных уравнений с двумя неизвестными a и b.

Перепишем ее в следующем виде:

Введем стандартные в статистике обозначения для моментов:

Тогда наша система перепишется в следующем виде:

которая решается стандартным образом.

Далее, осталось отметить, что раз критическая точка одна, а мы предварительно определили, что у нашей задачи решение есть, то задача решена полностью.

Многошаговые методы решения обыкновенных дифференциальных уравнений (ОДУ). Постановка краевой задачи для обыкновенных дифференциальных уравнений. Экстраполяционные методы Адамса. Интерполяционные методы Адамса. Понятие краевой задачи. Аналитические, приближенные и численные методы решения краевых задач. Редукция к вариационной задаче. Метод Ритца. Понятие вариационной задачи.
Элементы математической статистики