Физика атомного реактора Сопротивление материалов Математика решение задач Информатика Атомная энергетика безопасность Электротехника и электроника Ручные вычисления по методу Гаусса

Вычислительная математика

Метод итераций применяется к уравнению вида Х= u(x) на отрезке [a,b], где:

а) модуль производной функции u(x) невелик: | u'(x) | <= q < 1 (xÎ[a,b] )

б) значения u(x) лежат на [a,b] ,т.е. a <= u(x) <= b при xÎ[a,b].

Если заранее известно, что на отрезке [a,b] расположен ровно один корень уравнения Х=u(x), то достаточно проверить выполнение условия а).

Упражнения: определить, применим ли метод итераций для уравнений:

1.7 Х=ln(3X+2) на отрезке [0,5]. А на отрезке [1,5]?

Х=е х-9 на отрезке [10,12]. А на отрезке [0,1]?

Сведение исходного уравнения к виду, пригодному для применения метода итераций.

Сведение уравнения f(x)=0 к нужному виду обычно осуществляют одним из двух способов: Разложить рациональные дроби на сумму простейших дробей, не находя коэффициентов разложения

Выражают один из Х, входящих в уравнение, например уравнение ех - х-=0 приводят к виду:

Х=ех или Х = ln(х)

2) Подбирают множитель и производят преобразования: f(х)=0 => k*f(x)=0 => х=х + k*f(x), т.е. u(x)=х+ k*f(x). Например, если 0 < m < f'(x) <= M при ХÎ[a,b], то можно в качестве k взять величину - 1/М, и тогда 0 <= u'(x) = 1 +к* f'(x)= 1- 1/M * f' (x) <= 1- m/M

Упражнения. Свести к виду, пригодному для применения метода итераций уравнения:

1.9 х3- 3 х2 + 1 =0 на отрезке [ 2,3 ] .

1.10 x * tg(x/2)- sin(x/2) =0 на отрезке [-1,1 ] .

1.11  9-x2-ex= 0 на отрезке [1,2].

Метод Ньютона (Касательных)

В литературе этот метод часто называют методом линеаризации. Выбираем начальное приближение С0. Допустим, что отклонение С0 от истинного значения корня С* мало, тогда, разлагая f(C*) в ряд Тейлора в точке С0 , получим

f(C*) = f(C0) + f ¢(C0) (C*-C0) +¼ (8)

Если f ¢(C0) ¹ 0 , то в (8) можно ограничится линейными по DC =C-C0 членами. Учитывая, что f(C*)=0, из (9) можно найти следующее приближение для корня

C1 = C0 – f (C0) / f¢(C0)

или для (n+1)-го приближения

Cn+1= C n – f (C n) / f ¢(C n) (9)

Для окончания итерационного процесса можно использовать одно из двух условий

çCn+1 – Cn ç< e

или

çf(Cn+1) ç< e.

Исследование сходимости метода Ньютона проводится аналогично предыдущему случаю. Самостоятельно получить, что при выполнении условия

½f ''(C)/2f'(C)½<1.

метод Ньютона имеет квадратичную скорость сходимости ().

Рис. 3. Графическая интерпретация метода Ньютона для решения уравнения вида f(х)=0.

Построение нескольких последовательных приближений по формуле (9)

С0, С1, …, Сn = C*

приведено на рисунке 3.

Численное дифференцирование. Постановка задачи численного дифференцирования. Дифференцирование интерполяционного многочлена Ньютона. Применение ряда Тейлора для численного дифференцирования. Природа неустранимой погрешности формул численного дифференцирования.
Элементы математической статистики