Лабораторные работы по физике Примеры выполнения задания

Лабораторные работы физика
  • Измерение показателя преломления жидкости рефрактометром
  • Дисперсия света
  • Определение процентного содержания белка в молоке
  • Интерференция света
  • Интерференция света в тонких пленках
  • Определение радиуса кривизны линзы с помощью кроец Ньютона
  • Определение малых разностей показателей преломления интерферометром
  • Естественный и поляризованный свет
  • Поляризация при отражении и преломлении
  • Вращение плоскости поляризации
  • Эксперементальная проверка закона Малюса
  • Определение показателя преломления вещества
  • Изучение эффекта Фарадея
  • Изучение внутренних напряжений в твердых телах оптическим методом
  • Дифракция света
  • Метод зон Френелях
  • Дифракция от прямоугольной щели .
  • Дифракционная решетка
  • Определение длины световой волны
  • Законы поглащения света
  •  Квантовая природа света Тепловое излучение тел
  • Оптическая пирометрия
  • Определение постоянной Стефана-Больцмана
  • Определение температуры нити кинолампы
  • Изучение внешнего фотоэффекта
  • Определить красную границу фотоэффекта
  • Применение универсального фотометра ФМ-56
  • Волновая и квантовая оптика
  • Явление полного внутреннего отражения.
  • Принцип Гюйгенса.
  • Метод Юнга. Получение интерференционной картины
  • Интерференция света в тонких пленках
  • Дифракция света. Принцип Гюйгенса-Френеля.
  • Дифракция Френеля на круглом отверстии и диске.
  • Дифракция Фраунгофера на дифракционной решетке
  • Естественный и поляризованный свет
  • Поляризация света при двойном лучепреломлении
  • Анализ плоскополяризованного света. Закон Малюса
  • Искусственная оптическая анизотропия
  • Взаимодействие элетромагнитных волн с веществом
  • Тепловое излучение тел
  • Квантовый характер излучения
  • Фотоэлектрический эффект
  • Метод зон Френеля

    Вычисление результирующего колебания по формуле (2) является трудной задачей. Однако в тех случаях, когда волновая поверхность является симметричной относительно луча ОР, нахождение амплитуды результирующего колебания в точке Р может быть осуществлено приближенно, простым суммированием по методу зон Френеля. Френель предложил разбить волновую поверхность на зоны – концентрические участки сферической поверхности с центром в точке L, расстояние от которых до точки наблюдения изменяется от зоны к зоне на . Тогда световые возмущение, пришедшие в точку Р от двух соседних зон, будут иметь противоположные фазы. Площади зон приблизительно одинаковы (т.е. площадь зоны не зависит от ее номера ). С ростом  увеличится угол  и уменьшится коэффициент , следовательно, и амплитуда колебаний, приходящих в точку Р (рис.4): .Ввиду противоположности фаз колебаний, приходящих из двух соседних зон, амплитуда суммарного колебания, вызванного действием всех зон открытого фронта волны, будет выражаться соотношением

     (3)

    Представим амплитуды колебаний, приходящих от всех нечетных зон, в виде суммы двух слагаемых: 

     и т.д.

     Метод зон Френеля

     Рис.4

    Тогда уравнение (3) будет иметь вид

    Приближенно можно считать, что амплитуды колебаний от четных зон равны полусумме амплитуд колебаний от двух соседних нечетных зон. Тогда все выражения в скобках обращаются в нуль. Оставшаяся часть от амплитуды последней зоны  пренебрежимо мала, и . Следовательно, амплитуда А световой волны в точке Р от полностью открытого фронта волны равна половине амплитуды   от первой (центральной) зоны Френеля. Значение этой амплитуды почти не зависит от положения точки Р. Так как размер первой зоны Френеля не превышает долей миллиметра, можно считать, что свет распространяется по узкому каналу, т.е. прямолинейно. Рассмотрим теперь дифракцию от сферического фронта волны, частично закрытого экраном (рис.5). Если на этом отверстии укладывается только первая зона, то амплитуда колебаний в точке Р будет равна . Если на отверстии укладываются две зоны, то амплитуда колебаний близка к нулю. Ёслв в отверстии укладываются три зоны, то амплитуда становится приблизительно равной , так как амплитуды от первых двух зон взаимно погашаются. Итак, если в отверстии укладывается четное число зон,. то амплитуда световых колебаний в точке Р минимальна, если укладывается нечетное число зон, то амплитуда колебаний максимальна. Таким образом, если отверстие постепенно увеличивается, то в точке Р происходит чередование максимумов и минимумов амплитуды световых колебаний.

     

     Рис.5

    Интерференция света