Лабораторные работы по физике Примеры выполнения задания

Лабораторные работы физика
  • Измерение показателя преломления жидкости рефрактометром
  • Дисперсия света
  • Определение процентного содержания белка в молоке
  • Интерференция света
  • Интерференция света в тонких пленках
  • Определение радиуса кривизны линзы с помощью кроец Ньютона
  • Определение малых разностей показателей преломления интерферометром
  • Естественный и поляризованный свет
  • Поляризация при отражении и преломлении
  • Вращение плоскости поляризации
  • Эксперементальная проверка закона Малюса
  • Определение показателя преломления вещества
  • Изучение эффекта Фарадея
  • Изучение внутренних напряжений в твердых телах оптическим методом
  • Дифракция света
  • Метод зон Френелях
  • Дифракция от прямоугольной щели .
  • Дифракционная решетка
  • Определение длины световой волны
  • Законы поглащения света
  •  Квантовая природа света Тепловое излучение тел
  • Оптическая пирометрия
  • Определение постоянной Стефана-Больцмана
  • Определение температуры нити кинолампы
  • Изучение внешнего фотоэффекта
  • Определить красную границу фотоэффекта
  • Применение универсального фотометра ФМ-56
  • Волновая и квантовая оптика
  • Явление полного внутреннего отражения.
  • Принцип Гюйгенса.
  • Метод Юнга. Получение интерференционной картины
  • Интерференция света в тонких пленках
  • Дифракция света. Принцип Гюйгенса-Френеля.
  • Дифракция Френеля на круглом отверстии и диске.
  • Дифракция Фраунгофера на дифракционной решетке
  • Естественный и поляризованный свет
  • Поляризация света при двойном лучепреломлении
  • Анализ плоскополяризованного света. Закон Малюса
  • Искусственная оптическая анизотропия
  • Взаимодействие элетромагнитных волн с веществом
  • Тепловое излучение тел
  • Квантовый характер излучения
  • Фотоэлектрический эффект
  • Метод Юнга. Получение интерференционной картины.

    Как уже отмечалось, когерентных источников света в природе не существует. Однако когерентные световые волны можно получить, если свет, идущий от одного источника, разде­лить на две (или более) части и затем заставить их встретиться. В силу общности своего происхождения полученные лучи должны быть когерентными и при наложении интерферировать. Такое разделение может быть осуществлено с помощью экранов и щелей (метод Юнга), зеркал (зеркала Френеля) и преломляющих тел (бипризма Френеля).

     

     

     

    Метод Юнга. Получение интерференционной картиныВ 1803г. английский физик Т.Юнг с помощью двух ще­лей получил на экране интерференционную картину. Его опыт заключался в следующем: источником света служила ярко ос­вещенная щель S, от которой световая волна падала на две узкие равноудаленные щели S1 и S2, параллельные S (рис. 2.2). Щели S1 и S2 можно считать когерентными источниками света, а все три упомянутые щели можно рассматривать как точечные ис­точники, свет от которых распространяется во всех направле­ниях. Волны, идущие от S1 и S2, накладываясь друг на друга, ин­терферируют. Интерференционная картина наблюдается на эк­ране Э (рис. 2.2).

    Обозначим расстояние между щелями S1 и S2 равным d, а между щелями и экраном - l, причем l » d (рис. 2.3 а). Точка О – центр экрана, она расположена симметрично относительно ще­лей S1 и S2. Результат интерференции волн в произвольной точке экрана М, находящейся на расстоянии х от его центра О, должен определяться разностью хода Δ = l2- l1. Математический расчет дает для разности хода Δ = хd/l. В тех местах экрана, ко­торые удовлетворяют условию , образуется интерференционный максимум. Отсюда

    .

    В тех местах экрана, где , волны “га­сят” друг друга и образуется интерференционный минимум. От­сюда

    .

    Шириной интерференционной полосы Δх называется рас­стояние между соседними максимумами или минимумами

    .

    Величина Δх постоянна при заданных d, l и λ и не зависит от порядка интерференции m. Таким образом, при освещении щелей монохроматическим светом на экране наблюдается чере­дование светлых и темных полос одинаковой ширины (рис. 2.3 б). Чтобы полосы были хорошо различимы, Δх должна быть по­рядка 5 мм, тогда при λ = 500 нм отношение l/d равно 10000, т.е. выполняется условие l » d.

    При освещении щелей белым светом интерференционные максимумы становятся радужными. Это происходит из-за того, что положение интерференционного максимума зависит от длины волны падающего света, а белый свет содержит в себе все цвета спектра. Максимумы коротких длин волн (фиолетовых) будут располагаться ближе к центру экрана, за ними следуют максимумы синих длин волн и т.д. до самых длинных красных (рис. 2.3 в). В середине экрана при m = 0 максимумы всех волн совпадут из-за отсутствия разности хода и получится белая по­лоса.

    В настоящее время высокая степень когерентности свето­вых лучей достигается с помощью лазеров.

    Интерференция света