Лабораторные работы по физике Примеры выполнения задания

Лабораторные работы физика
  • Измерение показателя преломления жидкости рефрактометром
  • Дисперсия света
  • Определение процентного содержания белка в молоке
  • Интерференция света
  • Интерференция света в тонких пленках
  • Определение радиуса кривизны линзы с помощью кроец Ньютона
  • Определение малых разностей показателей преломления интерферометром
  • Естественный и поляризованный свет
  • Поляризация при отражении и преломлении
  • Вращение плоскости поляризации
  • Эксперементальная проверка закона Малюса
  • Определение показателя преломления вещества
  • Изучение эффекта Фарадея
  • Изучение внутренних напряжений в твердых телах оптическим методом
  • Дифракция света
  • Метод зон Френелях
  • Дифракция от прямоугольной щели .
  • Дифракционная решетка
  • Определение длины световой волны
  • Законы поглащения света
  •  Квантовая природа света Тепловое излучение тел
  • Оптическая пирометрия
  • Определение постоянной Стефана-Больцмана
  • Определение температуры нити кинолампы
  • Изучение внешнего фотоэффекта
  • Определить красную границу фотоэффекта
  • Применение универсального фотометра ФМ-56
  • Волновая и квантовая оптика
  • Явление полного внутреннего отражения.
  • Принцип Гюйгенса.
  • Метод Юнга. Получение интерференционной картины
  • Интерференция света в тонких пленках
  • Дифракция света. Принцип Гюйгенса-Френеля.
  • Дифракция Френеля на круглом отверстии и диске.
  • Дифракция Фраунгофера на дифракционной решетке
  • Естественный и поляризованный свет
  • Поляризация света при двойном лучепреломлении
  • Анализ плоскополяризованного света. Закон Малюса
  • Искусственная оптическая анизотропия
  • Взаимодействие элетромагнитных волн с веществом
  • Тепловое излучение тел
  • Квантовый характер излучения
  • Фотоэлектрический эффект
  • Анализ плоскополяризованного света. Закон Малюса.

    Глаз человека не может отличить поляризованный свет от естественного, поэтому для анализа поляризованного свет необходимо использовать поляризаторы, которые в этом случае называются анализаторами. Все ранее перечисленные поляризующие устройства можно использовать для анализа поляризации света. Анализировать поляризованность света первым предложил французский физик Э. Малюс (1775-1812), установив закон изменения интенсивности поляризованного света.

    Возьмем в качестве поляризатора и анализатора дихроичный кристалл турмалин (рис. 4.12). Пусть естественный свет падает перпендикулярно оптической оси ОО' поляризатора П. Через поляризатор свободно пройдут колебания светового вектора, параллельные плоскости поляризатора. Колебания светового вектора, перпендикулярные плоскости поляризации, полностью поглотятся кристаллом турмалина. Ранее уже говорилось о том, что любое колебание вектора Ес можно представить как результат сложения двух взаимно перпендикулярных векторов Ех и Еу (рис. 4. 2), а так как колебания вектора Ес естественного света хаотичны и равновероятны, то интенсивность света, прошедшего через поляризатор, равна половине интенсивности падающего естественного света:

    Анализ плоскополяризованного света. Закон Малюса

    Если плоско поляризованный свет падает на анализатор А (рис. 4.13), то через него пройдет только составляющая, параллельная главной плоскости анализатора:

    Е = Е0 cosj,

    где j - угол между плоскостями поляризации поляризатора и анализатора. Так как интенсивность света пропорциональна квадрату амплитуды (I ~ E2) ,то для интенсивности света I, вышедшего из анализатора получаем:

    I = I0 cos2j,

    где I0 – интенсивность света, падающего на анализатор. Этот закон называется законом Малюса. Если естественный свет с интенсивностью Iест проходит последовательно сквозь поляризатор и анализатор, то выходящий свет имеет интенсивность

    .

    При j = 0 (плоскости поляризатора и анализатора параллельны) интенсивность максимальна Imax = 1/2 Iест, при j = π/2 (плоскости поляризатора и анализатора взаимно перпендикулярны) интенсивность минимальна Imin = 0.

    Для анализа поляризованности света анализатор нужно вращать вокруг луча, если при этом можно найти такое положение, при котором свет сквозь него не проходит (интенсивность становится равной нулю), то такой свет полностью поляризован; если при вращении анализатора интенсивность света не изменяется, такой свет будет естественный.

     

    Интерференция поляризованных лучей.

    Цуги волн естественного света некогерентны, так как соответствуют излучению различных, независимых атомов источника света. При прохождении естественного света через одноосный анизотропный кристалл разные цуги участвуют в образовании обыкновенного и необыкновенного лучей. Поэтому они некогерентны. Если же пропустить через одноосный анизотропный кристалл плоско поляризованный свет, то обыкновенный и необыкновенный свет будут когерентны и при определенных условиях могут интерферировать. На рис. 4.15 представлена оптическая схема, позволяющая наблюдать интерференцию поляризованного света. Естественный свет, пройдя через поляризатор становится плоско поляризованным. Далее он попадает на пластинку, вырезанную из одноосного анизотропного кристалла параллельно оптической оси. Внутри пластинки он разбивается на два луча обыкновенный "о" и необыкновенный "е", которые пространственно не разделены, но движутся с разными скоростями. За время прохождения через пластинку между ними возникает разность хода

    Δ = (no-ne) d

    где d – толщина пластины. Хотя эти лучи когерентны и имеют оптическую разность хода, но они не могут интерферировать, так как вектора колебания Ео и Ее лежат во взаимно перпендикулярных плоскостях. Поэтому, чтобы получить интерференционную картинку необходимо совместить плоскости колебаний этих волн. Для этого применяют анализатор.

    Анализатор (рис. 4.16) пропустит только ту составляющую каждого из векторов (на рисунке это вектора Ее' и Ео' ), которая будет параллельна плоскости анализатора (ОО'). Интерференционная картина, наблюдаемая на выходе из анализатора, зависит от многих факторов, таких как разности фаз, длины волны падающего света, от угла между осью поляризатора и оптической осью двояко преломляющей пластины и т. д.

    Интерференция света