Лабораторные работы по физике Примеры выполнения задания

Лабораторные работы физика
  • Измерение показателя преломления жидкости рефрактометром
  • Дисперсия света
  • Определение процентного содержания белка в молоке
  • Интерференция света
  • Интерференция света в тонких пленках
  • Определение радиуса кривизны линзы с помощью кроец Ньютона
  • Определение малых разностей показателей преломления интерферометром
  • Естественный и поляризованный свет
  • Поляризация при отражении и преломлении
  • Вращение плоскости поляризации
  • Эксперементальная проверка закона Малюса
  • Определение показателя преломления вещества
  • Изучение эффекта Фарадея
  • Изучение внутренних напряжений в твердых телах оптическим методом
  • Дифракция света
  • Метод зон Френелях
  • Дифракция от прямоугольной щели .
  • Дифракционная решетка
  • Определение длины световой волны
  • Законы поглащения света
  •  Квантовая природа света Тепловое излучение тел
  • Оптическая пирометрия
  • Определение постоянной Стефана-Больцмана
  • Определение температуры нити кинолампы
  • Изучение внешнего фотоэффекта
  • Определить красную границу фотоэффекта
  • Применение универсального фотометра ФМ-56
  • Волновая и квантовая оптика
  • Явление полного внутреннего отражения.
  • Принцип Гюйгенса.
  • Метод Юнга. Получение интерференционной картины
  • Интерференция света в тонких пленках
  • Дифракция света. Принцип Гюйгенса-Френеля.
  • Дифракция Френеля на круглом отверстии и диске.
  • Дифракция Фраунгофера на дифракционной решетке
  • Естественный и поляризованный свет
  • Поляризация света при двойном лучепреломлении
  • Анализ плоскополяризованного света. Закон Малюса
  • Искусственная оптическая анизотропия
  • Взаимодействие элетромагнитных волн с веществом
  • Тепловое излучение тел
  • Квантовый характер излучения
  • Фотоэлектрический эффект
  • Интерференция света в тонких пленках

     Интерференцию часто можно наблюдать в природе. Например, радужное окрашивание масляных пленок на воде и мыльных пузырей возникает в результате интерференции света, отраженного от поверхностей пленки. Пусть на плоскопараллельную пленку с показателем преломления п и толщиной d падает плоская монохроматическая


    волна под углом i (рис.3). Падающая волна (луч 1) частично отражается от верхней поверхности пленки (луч 1¢) и частично преломляется (луч 1"). Поскольку эти две волны возникли вследствие деления одной и той же падающей волны, то они когерентны. Накладываясь друг на друга в некоторой точке Р фокальной плоскости линзы Л, эти волны интерферируют. Из рис.3 следует, что оптическая разность хода лучей 1' и 1", достигших точки Р, равна

      (9) [an error occurred while processing this directive]

    Добавочный член l/2 в формуле (9) учитывает потерю полуволны при отражении луча 1' от оптически более плотной среды в точке О. С учетом законов преломления и отражения света формулу (9) можно преобразовать к виду

      (10)

    Если , то в точке Р наблюдается максимальная интенсивность света, а если , то минимальная (см. формулы (8а) и (8б)).

    Так как отраженные от пленки лучи параллельны, то их интерференцию можно наблюдать невооруженным глазом, если аккомодировать его на бесконечность. Глядя на пленку под углом i, мы увидим ее окрашенной в тот цвет, для которого при данном угле падения выполняется условие максимума.

    Вообще говоря, интерференцию можно наблюдать и по другую сторону пленки, т.е. в проходящем свете. В этом случае интерферируют лучи, разделенные в точке С. В этом случае оптическая разность хода D уже не содержит дополнительного слагаемого l/2, поэтому максимуму в проходящем свете будет соответствовать минимум в отраженном свете, и наоборот.

    Полосы равного наклона

    Из формулы (10) следует, что оптическая разность хода D лучей, а, следовательно, и результат интерференции в тонких пленках, определяются четырьмя величинами – l, d, п и i. В зависимости от того, какая из величин – i или d – является переменной, различают полосы равного наклона и равной толщины.

    Пусть плоскопараллельная пластина толщиной d освещается рассеянным монохроматическим светом от точечного источника S (рис. 4).

     

     Рассмотрим три луча 1, 2 и 3, плоскость падения которых совпадает с плоскостью рисунка, а углы падения равны соответственно i1, i2 и i3 При отражении от верхней и нижней поверхности пластины лучи интерферируют в точках Р1, Р2 и Р3, усиливая или ослабляя друг друга в зависимости от угла падения. Такие же точки образуют лучи, лежащие в других плоскостях падения. Совокупность точек с одинаковой освещенностью дают на экране интерференционные полосы в виде концентрических эллипсов. Поскольку каждая из таких полос образована лучами, падающими на пластину под одним и тем же углом (под одинаковым наклоном), то они называются полосами равного наклона. При освещении пластины белым светом полосы имеют радужную окраску.

    Лучи, отразившиеся от верхней и нижней граней плоскопараллельной пластины, параллельны друг другу и «пересекаются» в бесконечности. Поэтому го­ворят, что полосы равного наклона локализованы в бесконечности. Их можно наблюдать невооруженным глазом, если аккомодировать его на бесконечность.

    Полосы равной толщины

    Рассмотрим другой случай, когда переменной величиной является толщина пластины d. Возьмем два параллельных луча 1 и 2 от монохроматического источника, падающих на поверхность прозрачного клина с углом q (рис. 5).

     

    В результате отражения от верхней и нижней поверхностей клина когерентные световые лучи 1¢ и 1", 2' и 2" интерферируют в точках B1 и В2, усиливая или ослабляя друг друга в зависимости от толщины клина в точках падения. Совокупности точек с одинаковой освещенностью образуют интерференционные полосы, которые в этом случае называются полосами равной толщины, поскольку каждая образована лучами, отраженными от мест с одинаковой толщиной клина.

    Так как интерферирующие лучи пересекаются вблизи поверхности клина, то принято говорить, что полосы равной толщины локализованы вблизи поверхности клина. Их можно наблюдать невооруженным глазом, если угол q достаточно мал (<1°), или использовать микроскоп.

    Кольца Ньютона

    Частным случаем полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ воздушного зазора между плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны R (рис.6).

     

    Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхности воздушного зазора между линзой и пластинкой. Для наглядности лучи 1¢ и 1", отраженные от воздушного зазора, изображены рядом с падающим лучом. При наложении отраженных лучей возникают полосы равной толщины. Толщина воздушного зазора d меняется симметрично в разные стороны относительно точки касания линзы и пластины. Поэтому полосы равной толщины имеют вид концентрических окружностей, которые принято называть кольцами Ньютона.

    Определим радиус r кольца Ньютона, образованного лучами, отраженными отповерхностей воздушного зазора толщиной d. Из рис.6 следует, что

     

    Поскольку d<<R, то членом d2 можно пренебречь и тогда

     (11)

    Толщина зазора определяет оптическую разность хода D, которая, с учетом потери полуволны на отражение, равна

     (12)

    Подставив сюда d из формулы (11), получим

     (13)

    Если , то наблюдается светлое кольцо максимальной интенсивности, для радиуса которого формула (13) дает

     (14)

    где  – номер кольца. Если , то наблюдается темное кольцо. Радиус т-го темного кольца равен

     (15)

    Из формул (14) и (15) следует, что радиусы колец Ньютона и расстояние между ними растут с увеличением радиуса кривизны линзы (или другими словами, с уменьшением угла между линзой и пластинкой).

    Если на линзу падает белый свет, то в отраженном свете наблюдается центральное темное пятно, окруженное системой цветных колец, которые соответствуют интерференционным максимумам для разных длин волн. В проходящем све­те потеря полуволны l/2 при отражении света от воздушной прослойки происходит дважды. Поэтому светлым кольцам в отраженном свете будут соответствовать темные кольца в проходящем свете и наоборот.

    При наличии любых, даже незначительных дефектов на поверхности линзы и пластинки правильная форма колец искажается, что позволяет осуществлять быстрый контроль качества шлифовки плоских пластин и линз.

    Интерференция света