Вакансия инженер-программист в Санкт Петербурге

Физика атомного реактора Сопротивление материалов Математика решение задач Информатика Атомная энергетика безопасность Электротехника и электроника

Теория представления знаний Искусственный интеллект Экспертные системы Язык LISP Набор порождающих правил Структурированные знаний MYCIN Оценка неопределенности Извлечение знаний CLIPS Назначение экспертных систем EMYCIN Аналиа гипотез Проблемы конструирования CENTAUR Анализ прототипа Модель мира Обучение без преподавателя Теория Демпстера—Шефера Компилятор LISP Две стратегии

Выделяют различные виды знания: научное, обыденное (здравый смысл), интуитивное, религиозное и др. Обыденное знание служит основой ориентации человека в окружающем мире, основой его повседневного поведения и предвидения, но обычно содержит ошибки, противоречия. Научному знанию присущи логическая обоснованность, доказательность, воспроизводимость результатов, проверяемость, стремление к устранению ошибок и преодолению противоречий.

В традиционной теории вероятностей для вычисления условной вероятности события d при данном s используется следующая формула:

P(d|s)=(d^ s)/P(S) (9.1)

Как видно, условная вероятность определяется в терминах совместимости событий. Она представляет собой отношение вероятности совпадения событий d и s к вероятности появления события s. Из формулы (9.1) следует, что

P(d^s)=P(d|s)P(d).

Если разделить обе части на P(s) и подставить в правую часть (9.1), то получим правило Байеса в простейшем виде:

P(d|s)=(s|d)P(d)/P(S) (9.2)

Это правило, которое иногда называют инверсной формулой для условной вероятности, позволяет определить вероятность P(d | s) появления события d при условии, что произошло событие s через известную условную вероятность P(s | d). В полученном выражении P(d) — априорная вероятность наступления события d, a P(d | s) — апостериорная вероятность, т.е. вероятность того, что событие d произойдет, если известно, что событие s свершилось.

Для систем, основанных на знаниях, формула (9.2) гораздо удобнее формулы (9.1), в чем вы сможете убедиться в дальнейшем.

Предположим, что у пациента имеется некоторый симптом заболевания, например боль в груди, и желательно знать, какова вероятность того, что этот симптом является следствием определенного заболевания, например инфаркта миокарда или перикардита (воспаление каверн в легких), или чего-нибудь менее серьезного, вроде несварения желудка. Для того чтобы вычислить вероятность Р(инфаркт миокарда боль в груди) по формуле (9.1), нужно знать (или оценить каким-либо способом), сколько человек в мире страдают таким заболеванием и сколько человек и больны инфарктом миокарда, и жалуются на боль в груди (т.е. имеют такой же симптом). Как правило, такая информация отсутствует, особенно последняя, которая нужна для вычисления вероятности Р (инфаркт миокарда л боль в груди). Таким образом, определение, данное формулой (9.1), в клинической практике не может быть использовано.

Отмеченная сложность получения нужной информации явилась причиной негативного отношения многих специалистов по искусственному интеллекту к вероятностному подходу вообще (см., например, [Charniak and McDermott, 1985, Chapter 8]). Это негативное отношение подкреплялось тем, что в большинстве классических работ по теории вероятностей понятие вероятности определялось как объективная частотность (частота появления при достаточно продолжительных независимых испытаниях).

Однако существует мнение, что эти базовые предположения небесспорны с точки зрения практических приложений (см., например, [Pearl, 1982] и [Cheeseman, 1985]). Сторонники такого подхода придерживаются субъективистской точки зрения на определение вероятности, который позволяет иметь дело с оценками совместного появления событий, а не с действительной частотой. Такой взгляд на вещи связывает вероятность смеси событий с субъективной верой в то, что событие действительно наступит.

Например, врач может не знать или не иметь возможности вычислить, какая часть пациентов, жалующихся на боль в груди, страдает инфарктом миокарда, но на основании собственного опыта он может оценить, у какой части его пациентов, страдающих этим заболеванием, встречался такой симптом. Следовательно, он может оценить значение вероятности Р(боль в груди | инфаркт миокарда). Субъективный взгляд на природу вероятности тесно связан с правилом Байеса по следующей причине. Предположим, мы располагаем достаточно достоверной оценкой вероятности P(s | а), где 5 означает симптом, a d— заболевание. Тогда по формуле (9.2) можно вычислить вероятность P(d\ s). Оценку вероятности P(d) можно взять из публикуемой медицинской статистики, а оценить значение P(s) врач может на основании собственных наблюдений.

Вычисление P(d | s) не вызывает затруднений, когда речь идет о единственном симптоме, т.е. имеется множество заболеваний D и множество симптомов S, причем для каждого члена из D нужно вычислить условную вероятность того, что у пациентов, страдающих этим заболеванием, наблюдался один определенный симптом из множества S. Тем не менее, если в множестве D имеется т членов, а в множестве Sп членов, потребуется вычислить тп + т + п оценок вероятностей. Это отнюдь не простая работа, еcли в системе медицинской диагностики используется до 2000 видов заболеваний и огромное число самых разнообразных симптомов.

Но ситуация значительно усложняется, если мы попробуем включить в процесс составления диагноза не один симптом, а несколько.

В более общей форме правило Байеса имеет вид

P(d|s1^...^sk )= P(s1^...^sk|d)P(d)/P(s1^...^sk) (9.3)

и требует вычисления (mn)k + m + nk оценок вероятностей, что даже при небольшом значении А; очень много. Эти оценки вероятностей требуются нам по той причине, что в общем случае для вычисления P(s1 ^ ....^ sk) нужно предварительно вычислить произведения вида

P(s1 | s2 ^.. .^sk )P(s2 | s3 ^.. .^sK )... P(sk ) .

Однако, если предположить, что некоторые симптомы независимы друг от друга, объем вычислений существенно снижается. Независимость любой пары симптомов Si, и Sj означает, что

P(Si)=P(Sl|Sj),

из чего следует соотношение

P(Si^Sj)=P(Si)P(Sj).

Если все симптомы независимы, то объем вычислений будет таким же, как и в случае учета при диагнозе единственного симптома.

Но, даже если это и не так, в большинстве случаев можно предположить наличие условной независимости. Это означает, что пара симптомов s\ и Sj является независимой, поскольку в нашем распоряжении имеются какие-либо дополнительные свидетельства на этот счет или фундаментальные знания Е. Таким образом,

P(Si|Sj,E)=P(Si|E).

Например, если в моем автомобиле нет горючего и не работает освещение, я могу смело сказать, что эти симптомы независимы, поскольку моих познаний в устройстве автомобиля вполне достаточно, чтобы предположить, что между ними нет никакой причинной связи. Но если автомобиль не заводится и не работает освещение, то заявлять, что эти симптомы независимы, нельзя, поскольку они могут быть следствием одной и той же неисправности аккумуляторной батареи. Степень доверия к симптому "не работает освещение" только увеличится, если обнаружится, что к тому же и двигатель не заводится. Необходимость отслеживать такого рода связи в программе и соответственно корректировать степень доверия к симптомам значительно увеличивает объем вычислений в общем случае (см. об этом в работе [Cooper, 1990]).

Таким образом, использование теории вероятности ставит перед нами следующие проблемы, которые лучше всего сформулировать в терминах задачи выбора:

В главе 19 представлен обзор символических методов отслеживания зависимости между используемыми данными, а в главе 21 описаны некоторые численные методы моделирования зависимости между вероятностями.

В следующем разделе мы рассмотрим альтернативный подход, с помощью которого удается обойти указанные сложности при построении экспертных систем. Здесь же, а также в главе 21 будут проанализированы критические замечания, касающиеся этого подхода.

Знание — в теории искусственного интеллекта и экспертных систем — совокупность информации и правил вывода (у индивидуума, общества или системы ИИ) о мире, свойствах объектов, закономерностях процессов и явлений, а также правилах использования их для принятия решений. Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.

Примеры решения типовых задач математика, физика, электротехника