Машиностроительное черчение Построение лекальных кривых

Физика
Лабораторные работы
Курс электрических цепей
Полупроводниковая электроника
Курс лекций и задач
Потенциал электpостатического поля
Пpимеpы использования теоpемы Гаусса
Закон Ома
Закон Ампеpа
Феppомагнетизм
Электротехника и электроника
Резонанс напряжений
Методы расчета сложных цепей
Трехфазные цепи
Цепи со взаимной индуктивностью
Несинусоидальные токи
Математика
Вычислительная математика
Векторная алгебра
Графика
Начертательная геометрия
Сборочные чертежи
Инженерная графика
Построение лекальных кривых
Геометрические построения
Позиционные задачи
Информатика
Электронная коммутация
Модернизация компьютера
Архитектура компьютера
Маршрутизация
Экспертные системы
Компьютерная безопасность
Требования к защите компьютерной информации
Проектирование системы защиты
Авторизация
Категорирование прав доступа
Диспетчер доступа
Антивирусная защита
Атомная энергетика
Атомные батареи
Физика атомного реактора
Атомные электростанции
Испытания атомного оружия
Воспоминания участников
атомного проекта

Построение лекальных кривых Лекальные кривые имеют большое применение в технике. Рассмотрим наиболее часто встречающиеся способы построения плоских кривых. Эти кривые обычно обводят с помощью лекал, поэтому они получили название лекальных кривых.

Наиболее часто встречаются резервуары, контурное очертание днища которого имеет форму эллипса (цистерны и т. д.)

Циклоида – траектория (путь) точки К, лежащей на окружности, которая катится без скольжения по прямой MN

Синусоида – плоская кривая выражающая закон изменения синуса угла в зависимости от изменения величины угла. Перемещения поперечных сечений брусьев в статически определимых задачах.

Эвольвентой окружности называется траектория, описываемая каждой точкой прямой линии, перекатываемой по окружности без скольжения.

Оформление чертежей Виды изделий и их структура В соответствии с ГОСТ 2.101 - 68 ИЗДЕЛИЕМ называется любой пpедмет или набоp предметов производства, подлежащих изготовлению на пpедпpиятии.

Спираль Архимеда – плоская кривая, которую описывает точка, движущаяся равномерно-поступательно от центра О по равномерно вращающемуся радиусу

Уклон и конусность Уклоном называется, величина, характеризующая наклон одной прямой линии к другой прямой. Уклон выражается простой дробью или в процентах.

Овал – замкнутая коробовая кривая, имеющая две оси симметрии. Коробовой кривой называется односторонне выпуклая замкнутая или незамкнутая линия, состоящая из сопряженных дуг окружностей разных радиусов.

Линии (ГОСТ 2.303-68)  Чертеж – это совокупность линий, чисел, условных знаков и надписей.

Основная надпись, форма 1 (ГОСТ 2.104-68) и дополнительная графа Правила нанесения размеров изучаются по мере прохождения отдельных разделов курса. Для выполнения первых индивидуальных заданий достаточно изучить приведенные ниже правила. Правила нанесения размеров изучаются по мере прохождения отдельных разделов курса. Для выполнения первых индивидуальных заданий достаточно изучить приведенные ниже правила. При недостатке места на размерных линиях, расположенных цепочкой, допускается заменять стрелки четко наносимыми точками или засечками под углом 45° к размерным линиям Для размеров, отличных от линейных, применяют условные знаки: Ø – означает диаметр, R – радиус,  - квадрат, - уклон, - конусность, ° - градус Масштабом называется отношение линейных размеров изображения предмета к его действительным размерам. В таблице 4 приводится неполный ряд стандартных значений масштабов.

Сопряжение – это плавный переход от одной линии к другой. То есть: касание прямой и дуги окружности, касание двух дуг окружностей. Это и плавный переход от одной линии к другой при помощи третьей, промежуточной линии. Точки касания линий называются точками сопряжения, а центры дуг – центрами сопряжения. Выполнить сопряжение при заданных радиусах – значит предварительно построить необходимые центры и точки сопряжения.

Примеры построения сопряжений Поэтапный показ решения примеров непосредственно на рисунках дает возможность во многих случаях ограничиваться локаничными пояснениями. Пример. Внутреннее касание двух окружностей. Через точку Т на окружности радиуса R1 провести касательную окружность радиуса R2 Пример. Внутреннее сопряжение окружности и прямой линии при помощи дуги окружности радиуса R1 Смешанное сопряжение двух дуг окружностей при помощи дуги радиуса R

Контур детали с элементами сопряжения Учебный чертеж детали с элементами сопряжения должен выглядеть подобно тому, как это показано на рис. 52. Необходимо четко обозначить ход построения центров и точек сопряжения, а сами точки должны быть выделены небольшими кружочками.

Овалы для стандартных аксонометрических проекций окружности Теоретически окружность в аксонометрии проецируется в эллипс. Для упрощения построений допускается эллипс заменять четырехцентровым овалом. Обьем и содержание задания

Для того, чтобы изготовить детали и собрать из них сборочную единицу, необходимо тщательно разработать конструкторскую документацию. Она должна однозначно определять, что должно быть изготовлено: наименование изделия, величина, форма, внешний вид, материалы, способы изготовления и др.

Форматы (ГОСТ 2.301-68*) Каждый чертеж должен быть выполнен на листе определенных размеров, который называется форматом. Формат определяется размерами внешней рамки. Внешняя рамка выполняется тонкой линией Предпочтительно выполнять чертежи так, чтобы размеры изображения и самого предмета были равны, т.е. в масштабе 1:1. Однако, в зависимости от величины и сложности предмета, а также от вида чертежа часто приходится размеры изображения увеличивать или уменьшать по сравнению с истинными. В этих случаях прибегают к построению изображения в масштабе.

Шрифты чертежные (ГОСТ 2.304 – 81*) Все надписи на чертежах следует выполнять шрифтами, установленными ГОСТ 2.304 – 81* «Шрифты чертежные».

Этапы выполнения наглядного изображения детали.

1. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей.

Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам (рис.10.15 а).

Рис. 10.15 а

2. Из этой поверхности вырезаются выступы, расположенные на верхней части детали по оси Х и строится призма высотой 34мм, одним из оснований которой будет верхняя плоскость обертывающей поверхности (рис.10.15б).

Рис. 10.15б

3. Из оставшейся призмы вырезается нижняя призма с основаниями 45 ´35 и высотой 11мм (рис.10.15в).

Рис. 10.15в

4. Строятся два цилиндрических отверстия, оси которых лежат на оси Z. Верхнее основание большого цилиндра лежит на верхнем основании детали, второе ниже на 26 мм. Нижнее основание большого цилиндра и верхнее основание малого лежат в одной плоскости. Нижнее основание малого цилиндра строится на нижнем основании детали (рис.10.15г).

Рис. 10.15г

5. Выполняется вырез 1/4 части детали, чтобы открыть внутренний контур ее. Разрез выполняется двумя взаимно перпендикулярными плоскостями, то есть по осям Х и Y (рис.10.15д).

Рис.10.15д

6. Выполняется обводка сечений и всей оставшейся части детали, а вырезанная часть убирается. Невидимые линии стираются, а сечения заштриховываются. Плотность штриховки должна быть такой же, как на ортогональном чертеже. Направление штриховых линий показано на рис10.15е соответствии с ГОСТ 2.317-69.

Линиями штриховки будут линии, параллельные диагоналям квадратов, лежащих в каждой координатной плоскости, стороны которых параллельны аксонометрическим осям.

Рис.10.15е

7. Существует особенность штриховки ребра жесткости в аксонометрии. По правилам

ГОСТ 2.305-68 в продольном разрезе ребро жесткости на ортогональном чертеже не

заштриховывается, а в аксонометрии заштриховывается .На рис.10.16 показан пример

штриховки ребра жесткости.

Рис. 10.16

Примеры решения типовых задач математика, физика, электротехника